This paper studies the feasibility of using a low-cost game device called Wii Fit Balance Board® to measure the static balance of older people for diagnosing a balance impairment, which is caused by muscle weakness in stroke patients. Sixty participants were invited to attend the risk assessment that included a clinical test. Four biofeedback testing patterns were tested with the participants. Two machine learning algorithms were selected to experiment using 10-fold cross validation scenario. The results show that Artificial Neuron Network has the best evaluation performance of 86.67%, 80%, and 80% in three out of four biofeedback testing patterns. This demonstrates that the application of static balance measurement together with Wii Fit Balance Board® could be implemented as a tool to replace high-cost force plate systems.
Biofeedback Assessment for Older People with Balance Impairment using a Low-cost Balance Board by Naoya Iwamoto, Takuya Kato, Hubert P. H. Shum, Ryo Kakitsuka, Kenta Hara and Shigeo Morishima in 2018
Proceedings of the 2017 Global Wireless Summit (GWS)