3D Car Shape Reconstruction from a Single Sketch Image

3D Car Shape Reconstruction from a Single Sketch Image

Abstract

Efficient car shape design is a challenging problem in both the automotive industry and the computer animation/games industry. In this paper, we present a system to reconstruct the 3D car shape from a single 2D sketch image. To learn the correlation between 2D sketches and 3D cars, we propose a Variational Autoencoder deep neural network that takes a 2D sketch and generates a set of multiview depth & mask images, which are more effective representation comparing to 3D mesh, and can be combined to form the 3D car shape. To ensure the volume and diversity of the training data, we propose a feature-preserving car mesh augmentation pipeline for data augmentation. Since deep learning has limited capacity to reconstruct fine-detail features, we propose a lazy learning approach that constructs a small subspace based on a few relevant car samples in the database. Due to the small size of such a subspace, fine details can be represented effectively with a small number of parameters. With a low-cost optimization process, a high-quality car with detailed features is created. Experimental results show that the system performs consistently to create highly realistic cars of substantially different shape and topology, with a very low computational cost.

Publication

3D Car Shape Reconstruction from a Single Sketch Image by Shoujiang Xu, Edmond S. L. Ho and Hubert P. H. Shum in 2019
Proceedings of the 2019 International Conference on Motion, Interaction and Games (MIG) Posters

# Impact factors are artificially designed to facilitate this assignment
## Citation counts are artificially designed to facilitate this assignment
Citation: 19##  

Links and Downloads

Thumbnail Thumbnail Thumbnail Thumbnail Thumbnail Thumbnail Thumbnail Thumbnail
Paper
Thumbnail
DOI - Publisher's Page

YouTube

Similar Research